MICROCHLIP RTG4 Goddefgarwch Ymbelydredd Cenhedlaeth 4

MICROCHLIP RTG4 Goddefgarwch Ymbelydredd Cenhedlaeth 4

RHAGARWEINIAD

Mae'r Nodyn Cais hwn yn disgrifio amrywiol ffynonellau cloc a chylchedau rhyngwyneb Vectron y gellir eu defnyddio i yrru Mewnbynnau'r Cloc Cyfeirio (REFCLK) o Flociau SerDes yr FPGA sy'n goddef ymbelydredd RTG4.

Gall y Microchip RTG4 (Radiation-Tolerant Generation4) FPGA (Field Programmable Gate Array) dderbyn signalau cloc mewn dau fath o fewnbynnau cloc:

  1. Clock signals into the RTG4 general purpose and dedicated clock input pins, for use as a clock to the logic in the Digital Fabric.
  2. Clock signals into the SerDes Blocks Reference Clock input pins, which input a reference clock for use by the dedicated high-speed SerDes Blocks on chip.

Of the two types of clock inputs, RTG4 REFCLK Inputs will be examined for this Application Note. The RTG4 REFCLK Inputs can be programmed by a FPGA designer to one of the various receiver types (differential or single-ended signal), and each has logic level requirements that will need direct interface or translation interface circuit connections to work properly when used with a standard clock driver (See Table 4). Information for providing clock input to the RTG4 Digital Fabric (type ‘1’ above) is not presented here, but it can be connected with a standard driver clock the same as providing clock input to the RTG4 REFCLK receivers.

Yn ogystal â rhestru a thrafod y dyfeisiau hyn, mae'r Nodyn Cais hwn hefyd yn crynhoi lefelau rhesymeg manyleb Mewnbynnau REFCLK RTG4 sy'n ofynnol ar gyfer gyrwyr ffynhonnell y cloc gyda lefelau rhesymeg allbwn a gyflwynir yn Nhabl 4. Mae'r Nodyn Cais hefyd yn dangos gosodiadau a mesuriadau gyda rhai tonffurfiau nodweddiadol a brofwyd yn y DevKit RTG4, er mwyn rhoi hyder bod yr atebion yn gweithio mewn caledwedd.

CLOCAU AR GYFER GYRRU MEWNBYNIADAU REFCLK FPGA RTG4

Mae'r nodyn cais hwn yn manylu ar y defnydd o gyfresi osgiliadur lluosog, y gylchedwaith gofynnol, a'r gosodiadau cyfatebol ar gyfer yr REFCLK RTG4. Mae Tabl 1 yn darparu cyfeirnod cyflym i gwsmeriaid ar gyfer rhifau rhannau osgiliadur y gellir eu harchebu ar amleddau cyffredin. Yr osgiliaduron a restrir yw CMOS pen sengl 2.5V neu 3.3V neu allbwn LVDS cyflenwol 3.3V, dos ïoneiddio cyfanswm lleiaf (TID) o 100 krad, a gellir eu cyplysu'n uniongyrchol â'r RTG4 gyda'r gosodiad LVCMOS25, LVCMOS33, neu LVDS25_ODT. Mae'r opsiynau cost isaf sy'n bodloni cydymffurfiaeth lawn ar gyfer lefelau sgrinio'r RTG4 wedi'u rhestru. Darperir gwybodaeth ar ôl Tabl 1 os oes angen ffurfweddiadau, lefelau ymbelydredd (hyd at 300 krad), neu gaeadau osgiliadur eraill. Darperir y wybodaeth ar ôl Tabl 1 hefyd at ddibenion cydymffurfio.

TABL 1: RECOMMENDED VECTRON HIGH RELIABILITY OSCILLATOR MODELS AT THREE PRIMARY REFERENCE CLOCK FREQUENCIES.

Lefel Sgrinio FPGA Prif Amledd y Cloc Rhesymeg Allbwn Rhif Model yr Osgilydd Cyfeirnod Safonol Osgilydd Dibynadwyedd Uchel Vectron
ES, MS, Proto 100 MHz CMOS 1157D100M0000BX OS-68338
B 1157B100M0000BE
EV, V 1157R100M0000BS
ES, MS, Proto 100 MHz LVDS 1203D100M0000BX DOC203679
B 1203B100M0000BE
EV, V 1203R100M0000BS
ES, MS, Proto 125 MHz CMOS 1403D125M0000BX DOC204900
1403D125M0000CX
B 125 MHz CMOS 1403B125M0000BE DOC204900
1403B125M0000CE
EV 125 MHz CMOS 1403R125M0000BS DOC204900
1403R125M0000CS
ES, MS, Proto 125 MHz LVDS 1203D125M0000BX DOC203679
B 1203B125M0000BE
EV, V 1203R125M0000BS
ES, MS, Proto 156.25 MHz LVDS 1203D156M2500BX DOC203679
B 1203B156M2500BE
EV, V 1203R156M2500BS

Os oes angen amledd arall, allbwn rhesymeg, cyfaint cyflenwad ar raglentage, lefel TID, neu lloc osgiliadur, argymhellir defnyddio'r holl Safonau Osgiliadur Dibynadwyedd Uchel Vectron canlynol fel y REFCLK.

  • LVDS (See Setup Figure 2 and Figure 4):
    • DOC203679, Oscillator Specification, Hybrid Clock for Hi-Rel Standard, LVDS Output
    • DOC206903, Oscillator Specification, Hybrid Clock for Hi-Rel Standard, 300 krad Tolerant, LVDS Output
  • LVPECL (See Setup Figure 7, Figure 9, and Figure 11):
    • DOC203810, Oscillator Specification, Hybrid Clock for Hi-Rel Standard, LVPECL Output
  • CMOS (See Figure 13):
    • OS-68338, Oscillator Specification, Hybrid Clock, Hi-Rel Standard, CMOS Output (3.3V supply, 100 krad)
    • DOC206379, Oscillator Specification, Hybrid Clock for Hi-Rel Standard, 300 krad Tolerant CMOS (3.3V supply, 300 krad)
    • DOC204900, Oscillator Specification, Hybrid Clock for Hi-Rel Standard, High Frequency CMOS (2.5V/3.3V supply, 100 krad)

MEWNBYNIADAU REFCLK FPGA RTG4

Gellir ffurfweddu Mewnbynnau REFCLK RTG4, gan y dylunydd FPGA, i unrhyw un o'r Safonau IO a restrir isod (Cyfeiriad: Tabl 5 o Ganllaw Defnyddiwr UG0567, Rhyngwynebau Cyfresol Cyflymder Uchel RTG4 FPGA).

TABL 2: INPUT CONFIGURATION OPTIONS

Cyflenwad SERDES_VDDI 3.3V 2.5V 1.8V
Safonau a Gefnogir LVTTL/LVCMOS33 LVCMOS25 LVCMOS18
LVDS33 LVDS25 (Nodyn 1) SSTL18-Dosbarth 1
LVPECL RSDS SSTL18-Dosbarth 2
RSDS Mini-LVDS HSLT18-Dosbarth 1
Mini-LVDS SSTL25-Dosbarth 1
SSTL25-Dosbarth 2

Nodyn

  1. Ar gyfer LVDS33 a LVDS25, dylai dylunwyr gyfeirio at Ganllaw Defnyddwyr RGT4 I/O a thaflen ddata DS0131 RTG4 FPGA am argymhellion terfynu a modd cyffredin cywir i gyflawni perfformiad jitter gorau posibl.
  2. Cefnogir mewnbynnau HCSL yn uniongyrchol gyda mewnbynnau LVDS I/O STD o'r Libero. Nid oes STD HCSL I/O penodol ar gael yn Libero a chefnogir dyluniadau sy'n gofyn am HCSL trwy ddefnyddio'r safon LVDS25 I/O.

Bydd rhaglennu'r Safon Mewnbwn/Allbwn hefyd yn gosod y math Mewnbynnau REFCLK cyfatebol. Cyflwynir y Mewnbynnau REFCLK poblogaidd canlynol yn y Nodyn Cais hwn gydag argymhellion:

  • LVDS25_ODT: ODT improves the signaling environment by reducing the electrical discontinuities introduced with off-die termination; thus, it enables reliable operation at higher signaling rates (Microchip_RTG4_FPGA_IO_user_Guide_UG0741_V4). This also provides the common-mode noise rejection on the transmission lines all the way to the receiver with the built-in ODT to reduce noise emission and noise interferences. An LVDS or LVPECL clock (interface circuit needed) can be used to drive the LVDS25_ODT.
  • LVDS25: It is recommended to use LVDS25_ODT for best waveform and jitter performance. When LVDS25 is used an external differential termination is required. An external differential termination resistor of 200Ω (typical) may be implemented to improve the VID minimum requirement margin when using with a standard LVDS driver.
    The 200Ω load must be placed as close as possible to the RTG4 receiver input pins for better waveform and jitter performance.
  • LVDS33: This is not recommended for use due to the minimum VID requirement of 0.50V, which is higher than a standard LVDS output differential voltage o 0.34V ac mae hefyd yn uwch na'r gwahaniaeth allbwn LVPECL lleiaftage o 0.470V yn ôl Tabl 4.
  • LVPECL33: This is not recommended for use due to the VICM requirement of 1.8V maximum, which is lower than the standard LVPECL output common mode voltage o 2.0V, ac oherwydd y gofyniad VID o leiaf 0.600V, sy'n uwch na'r gwahaniaeth allbwn LVPECL lleiaftage o 0.470V yn ôl Tabl 4.
  • LVCMOS33/LVCMOS25: This is recommended for use. These are single-ended REFCLK Inputs, requiring no interface translating circuit for simple direct connections to reduce component count. OS-68338 3.3V clock up to 100 MHz can be used for driving LVCMOS33. The 300 krad DOC206379 3.3V clock up to 80 MHz can be used for driving LVCMOS33. For faster speed, the high frequency 2.5V/3.3V CMOS clock of DOC204900 up to 125 MHz can be used for driving LVCMOS25 (used with 2.5V clock) or LVCMOS33 (used with 3.3V clock). The max operating frequency of the high frequency CMOS DOC204900 is 160 MHz, but the application is limited to 125 MHz due to the high input capacitance 20 pF max of the RTG4 receiver. This application limit is based on the output sink/ source current capability of the oscillator clocks and the capacitive load (20 pF in this case), using the power dissipation formula.

Cyfrifir y Defnydd Pŵer Llwyth Capasitif drwy'r hafaliad canlynol.

HAFALIAD 1:

Lle:
C = The load capacitance.
f = The signal frequency.
IC = The dynamic consumption current.

P=C x V CC₂ x f=V CC x I C
I C =C x V CC x f

Am gynamph.y., ar 125 MHz a chyflenwad 3.0V, cyfrifir y cerrynt defnydd fel 20 pF x 3.0V x 125 MHz = 7.5 mA, fel y disgwylir iddo fod yn is na'r cerrynt sinc/ffynhonnell a argymhellir o 12 mA (Cyfeiriad: TI 54AC00-SP, byffer allbwn a ddefnyddir yn yr osgiliadur DOC204900).

CYFROL MEWNBWN RTG4 REFCLKTAGMANYLEBAU E A DATA ALLBWN Y GYRRWR

Mae'r mewnbwn cyftagRhestrir gofynion Mewnbynnau REFCLK RTG4 yn Nhabl 3 i ddarparu'r terfynau manyleb i ddata allbwn y gyrrwr a gyflwynir yn Nhabl 4.

TABL 3: RTG4 SERDES REFCLK INPUT VOLTAGMANYLEBAU E (Nodyn 1)

COFIO Mewnbwn Cyflenwad Cyftage (VDDI)

VID (Nodyn 2)

VICM (Nodyn 2)

Minnau. Teip. Max. Minnau. Teip. Max.
LVDS25_ODT 2.5V ±5% 0.20V 0.35V 2.40V 0.05V 1.25V 1.50V
LVDS25 2.5V ±5% 0.20V 0.35V 2.40V 0.05V 1.25V 2.20V
LVDS33 (Nodyn 3) 3.3V ±5% 0.50V 2.40V 0.60V 1.25V 1.80V
LVPECL33 (Nodyn 3) 3.3V ±5% 0.60V 2.40V 0.60V 1.80V

VIL

VIH

LVCMOS25 2.5V ±5% -0.30V 0.70V 1.7V 2.625V
LVCMOS33 3.3V ±5% -0.30V 0.80V 2.0V 3.450V

Nodyn

  1. See Microchip RTG4_FPGA data sheet for more details on SerDes REFCLK Input VoltagManylebau e.
  2. Figure 1 depicts the VID and VICM for the differential inputs. Note that VID is half of VDiff, and is equivalent to a single-ended signal referenced from one input to ground.
  3. Do not use LVDS33 and LVPECL33 as explained in the RTG4 FPGA REFCLK INPUTS section for LVDS33 and LVPECL33. These specification limits compared with the output data ranges in Table 4 are used to support this conclusion.
    Rtg4 Refclk Input Voltage Specifications And Driver Output Data

FFIGUR 1: VID a VICM ar gyfer Mewnbynnau Gwahaniaethol.

Hefyd, mae'n rhaid i'r VICM a'r VID fodloni amodau'r fformwlâu isod:

HAFALIAD 2:

VICM + (V ID/2)< VDDI + 0.4V
a
VICM- (VID/2)>–0.3V

TABL 4: CLOCK DRIVER INTERFACE CONFIGURATION AND OUTPUT DATA (Note 1)

Ffigur Gosod Cyfluniad Rhyngwyneb VID (Nodyn 2) VICM (Nodyn 2)
Minnau. Teip. Max. Minnau. Teip. Max.
Ffigur 2 (Nodyn 3) LVDS to LVDS25_ODT Direct Interface 0.250V 0.340V 0.450V 1.125V 1.250V 1.450V
Ffigur 4 (Nodyn 4) LVDS to LVDS25 200Ω Termination 0.520V 0.610V 0.720V 1.125V 1.350V 1.500V
Ffigur 7 (Nodyn 5) LVPECL to LVDS25_ODT VICM 3.3V-Bias 0.470V 0.800V 0.950V Nodyn 5 1.240V Nodyn 5
Ffigur 9 (Nodyn 6) LVPECL to LVDS25_ODT VICM Self-Bias 0.470V 0.800V 0.950V 1.030V 1.233V 1.437V
Ffigur 11 (Nodyn 7) LVPECL to LVDS25_ODT VICM Self-Bias2 0.289V 0.493V 0.586V 1.030V 1.233V 1.437V

VIL

VIH

Ffigur 13 (Nodyn 8) CMOS i LVCMOS33 0.297V 0.330V 0.363V 2.673V 2.970V 3.267V
(Nodyn 8) CMOS i LVCMOS25 0.237V 0.250V 0.263V 2.138V 2.250V 2.363V

Nodyn

  1. Output Data is recorded as VID and VICM to be consistent with the RTG4 REFCLK Inputs Voltagcyfeiriadau e. Gweler y Ffigurau Gosod a'r tonffurfiau canlyniadol am fanylion ar ddefnydd ffynhonnell y cloc a chylchedau rhyngwyneb. Gweler hefyd yr adran Mesuriadau Jitter am wybodaeth ychwanegol.
  2. VID and VICM are referenced to Ground. VID is a single-ended signal measured at the input of the RTG4 receiver to correspond with the specification VID of the RTG4 REFCLK Inputs (see Note 2 of Table 3). All the logic levels also meet the conditions of the formulas required for the RTG4 REFCLK Inputs: VICM + (VID/2) < VDDI + 0.4V and VICM – (VID/2) > –0.3V.
  3. Setup Figure 2: The VID and VICM limits are defined by the output voltaglefelau e o Dabl 2 o Vectron
    DOC203679 for standard LVDS.
  4. Setup Figure 4: The typical values of VID and VICM are determined by measurements.
  5. Setup Figure 7: The VID range is determined using the output voltaglefelau e o Dabl 2 o Vectron DOC203810, “Cyfaint Allbwntage: VOH = VCC – 1.085 to VCC – 0.880, VOL = VCC – 1.830 to VCC – 1.555”.
    The biasing network resistors (R3 to R6) and its supply voltage fydd yn pennu'r ystod VICM ar gyfer y cynllun hwn.
  6. Setup Figure 9: The VID range is determined using the output voltaglefelau e o Dabl 2 o Vectron DOC203810, “Cyfaint Allbwntage: VOH = VCC – 1.085 to VCC – 0.880, VOL = VCC – 1.830 to VCC – 1.555”.
    The LVPECL output common mode voltage is calculated as VCC – 1.3V. With a VCC of 3.3V ±10%, the VICM ranges from 1.030V to 1.437V for this interface scheme with the resistor nominal values.
  7. Setup Figure 11: The VID range is determined using the output voltaglefelau e o Dabl 2 o Vectron
    DOC203810, “Cyfaint Allbwntage: VOH = VCC – 1.085 to VCC – 0.880, VOL = VCC – 1.830 to VCC – 1.555”, and through the voltage divider, the 51Ω and 82Ω resistor network. The LVPECL output common mode voltage is calculated as VCC – 1.3V. With a VCC of 3.3V ±10%, the VICM ranges from 1.030V to 1.437V for this interface scheme with the resistor nominal values.
  8. Setup Figure 13: The VIL and VIH range is determined by the standard CMOS logic levels as VIL = VCC x 0.1 and VIH = VCC x 0.9, where VCC is the supply voltage 3.3V ±10% neu 2.5V ±5%.

CYMHARU LEFELAU SGRINIAU RTG4 YN ERBYN SGRINIAU OSGILATOR A PHEDIGRIAU

Oherwydd gwahaniaethau yn y gofynion a restrir yn MIL-PRF-38535 (ar gyfer electroneg wedi'i galedu gan ymbelydredd) a MIL-PRF55310 (ar gyfer osgiliaduron crisial), nid oes cyfatebiaethau union mewn lefelau sgrinio a phedairi cydrannau ar gael. Mae Tabl 5 yn crynhoi lefelau sgrinio ar gyfer yr RTG4, a'r lefelau sgrinio a phedairi cyfatebol a argymhellir ar gyfer Osgiliaduron Vectron. Anogir cwsmeriaid i ail-view manylebau perthnasol ar gyfer cymwysiadau hollbwysig i sicrhau cydymffurfiaeth lawn.

TABL 5: RTG4 SCREENING LEVELS VS. OSCILLATOR SCREENING AND PEDIGREES

RTG4 Sgrinio Lefel Sgrinio Osgiliadur Oscillator Component Pedigree Disgrifiad
ES, MS, Proto X D Engineering Model Hardware using high reliability design with com- metrical grade components and non-swept quartz.
B E B Caledwedd Gradd Filwrol gan ddefnyddio dyluniad dibynadwyedd uchel gyda chydrannau gradd milwrol a chwarts wedi'i ysgubo.
EV, V S R Caledwedd Gradd Gofod gyda marw 100 krad, cydrannau gradd gofod, a chwarts wedi'i ysgubo.

GENERAL RECOMMENDATIONS AND SUMMARY

  1. When an external resistor like the 200Ω termination for differential driving is used, it must be placed as close as possible to the differential receiver input pins. Otherwise, waveform and jitter will greatly degrade.
  2. RTG4 differential receiver must be terminated at the inputs either with an external resistor (100Ω or 200Ω) or with ODT (RTG4 On-Die Termination) for all clock driver types for best waveform and jitter performance.
  3. The clock oscillator driver should be placed as close as possible to the input pins of the RTG4 receiver to help reduce interferences and minimize reflection on the transmission line due to possible impedance mismatching.
  4. It is recommended to use the drivers and interface circuits listed in Table 4. Do not use the RTG4 REFCLK Inputs LVDS33 and LVPECL33.

TABL 6: RTG4 REFCLK INPUTS AND CLOCK DRIVER MATRIX

Math o Arwydd RTG4

Gyrrwr Cloc Vectron

Mewnbwn REFCLK Math o Gloc Lluniad Manyleb Radiation Tolerance Cyflenwad Cyftage Max. Amlder Cylchdaith Terfynu
Gwahaniaethol LVDS25_ODT LVDS DOC203679 100 krad 3.3V 200 MHz Rhyngwyneb Uniongyrchol Ffigur 2
DOC206903 300 krad 3.3V 200 MHz
LVDS25_ODT LVPECL DOC203810 50 krad (ELDRS) 3.3V 700 MHz Ffigur 7Ffigur 9, Ffigur 11
LVDS25 LVDS DOC203679 100 krad 3.3V 200 MHz 200Ω, Ffigur 4
DOC206903 300 krad 3.3V 200 MHz
LVDS33

Peidiwch â Defnyddio

LVPECL33

Peidiwch â Defnyddio

Diwedd Sengl LVCMOS33 CMOS OS-68338 100 krad 3.3V 100 MHz Rhyngwyneb Uniongyrchol Ffigur 13
DOC204900 100 krad 3.3V 125 MHz
DOC206379 300 krad 3.3V 80 MHz
LVCMOS25 CMOS DOC204900 100 krad 2.5V 125 MHz Rhyngwyneb Uniongyrchol Ffigur 13

For differential signal application, the only choice for RTG4 to set to is LVDS25_ODT (used with LVDS or LVPECL clock driver) or LVDS25 (used with LVDS clock driver and external 200Ω termination). The CMOS single-ended signal solution offers the best Total Jitter and Deterministic Jitter performance (See Jitter Measurements Table 7, Table 8, and Table 9), simple direct interface and options to use either the 2.5V or 3.3V supply, but speed is limited to 100 MHz (OS-68338), 80 MHz (DOC206379) and 125 MHz (DOC204900) for the three Vectron CMOS clocks.

RHYNGWYNEB CYLCH A DATA

FFIGUR 2: LVDS i RTG4 LVDS25_ODT, Rhyngwyneb Uniongyrchol.
Circuit Interface And Data

FFIGUR 3: Measured Waveforms, LVDS to LVDS25_ODT, Direct Interface (Waveforms Measured on RTG4 DevKit).
Circuit Interface And Data

Nodyn

  1. A LeCroy active probe ZS1500 1.5 GHz was used for the measurements. VID1 and VID2 were measured with reference to Ground at room temperature.
  2. See Figure 2 for the setup diagram. The oscillator clock driver (1204R156M25000BF used) was mounted on the RTG4 DevKit in place of the REFCLK 125 MHz (disabled and isolated) and the whole board was tested over temperature from –40°C to +85°C with Microchip EPCS Demo GUI software used to check for the error-free transmission loop.

FFIGUR 4: LVDS to RTG4 LVDS25 External 200Ω Termination.
Circuit Interface And Data

FFIGUR 5: Setup Diagram for LVDS 200Ω Termination.
Circuit Interface And Data

Nodyn

  1. This test setup was used to measure the waveforms for the diagram Figure 4 to present here in place of the waveforms measured on the RTG4 DevKit. The waveforms measured on the DevKit using the setup of Figure 4 were not so representative because the 200Ω load resistor used with the RTG4 LVDS25 couldn’t be placed as close to the receiver inputs as recommended to obtain good waveforms.
  2. The load was placed at the input of the oscilloscope for better waveform measurements. Only half of the signal was measured using this setup. The 50Ω series resistors connected via the oscilloscope ground form a load of 200Ω between two outputs of the LVDS oscillator. The clock source used was 1204R156M25000BF.

FFIGUR 6: Measured Waveforms, LVDS to LVDS25, External 200Ω Termination (Waveforms Measured with Bench Fixture and 50Ω Coax Cables).
Circuit Interface And Data
Nodyn

  1. The actual signal is two times the measured value, as explained in Figure 5. Waveform was measured at room temperature.

FFIGUR 7: LVPECL i LVDS25_ODT, VICM 3.3V-Bias.
Circuit Interface And Data

Nodyn

  1. Use 1 kΩ for R4 and R6 if a supply voltage of 2.5V is used for the biasing network.
  2. C1 and C2 of 0.1 µF not only serve as a DC block, but also provide a full LVPECL differential signal swing to drive the receiver with little attenuation. The AC-coupling capacitors should have low ESR and low inductance at targeted clock frequency.

FFIGUR 8: Measured Waveforms, LVPECL to LVDS25_ODT, VICM 3.3V-Bias (Waveforms Measured on RTG4 DevKit).
Circuit Interface And Data

Nodyn

  1. A LeCroy active probe ZS1500 1.5 GHz was used for the measurements. VID1 and VID2 were measured with reference to Ground at room temperature.
  2. See Figure 7 for the setup diagram. The oscillator clock driver (1304R156M25000BF used) was mounted on the RTG4 DevKit in place of the REFCLK 125 MHz (disabled and isolated) for testing.

FFIGUR 9: LVPECL to LVDS25_ODT, V ICM Self-Bias.
Circuit Interface And Data

Nodyn

  1. This VICM Self-Bias Termination is an alternative to that of Figure 7. This scheme requires no external supply voltage for the biasing and saves two resistors over that of Figure 7.
  2. C1 and C2 of 0.1 µF provide a full LVPECL differential signal swing to drive the receiver with little attenuation. The AC-coupling capacitors should have low ESR and low inductance at targeted clock frequency.

FFIGUR 10: Measured Waveforms, LVPECL to LVDS25_ODT, VICM Self-Bias (Waveforms Measured on RTG4 DevKit).
Circuit Interface And Data

Nodyn

  1. A LeCroy active probe ZS1500 1.5 GHz was used for the measurements. VID1 and VID2 were measured with reference to Ground at room temperature.
  2. See Figure 9 for the setup diagram. The oscillator clock driver (1304R156M25000BF used) was mounted on the RTG4 DevKit in place of the REFCLK 125 MHz (disabled and isolated) for testing.

FFIGUR 11: LVPECL i LVDS_ODT, VICM Hunan-Rhagfarn2.
Circuit Interface And Data

Nodyn

  1. This VICM Self-Bias termination is similar to the setup of Figure 9 without the coupling capacitors C1 and C2. The driver output signal is divided down by the resistor network but is still large enough to drive the RTG4 LVDS25_ODT. The rad-hard oscillator 1304R156M25000BF can be used for the clock source.

FFIGUR 12: Simulated Waveforms, LVPECL to LVDS25_ODT, VICM Self-Bias2 (Keysight ADS 2017 software used).
Circuit Interface And Data

IGURE 13: CMOS i RTG4 LVCMOS33.
Circuit Interface And Data

Nodyn

  1. A Vectron OS-68338 1103R100M00000BF 3.3V CMOS clock was used in the setup to drive the RTG4 LVCMOS33 and the waveform at Q was measured and presented in Figure 14.

FFIGUR 14: Tonffurfiau wedi'u Mesur, CLOC CMOS (OS-68338 100 MHz) i LVCMOS33.
Circuit Interface And Data

Nodyn

  1. A LeCroy active probe ZS1500 1.5 GHz was used for the measurement. The waveform was measured at the output of the clock driver at room temperature.
  2. See Figure 13 for the setup diagram. The oscillator clock driver (1103R100M00000BF used) was mounted on the RTG4 DevKit in place of the REFCLK 125 MHz (disabled and isolated) for testing.

MESURIADAU JITTER

O fewn pob trosglwyddydd o'r SerDes, mae'r sylfaen amser a ddarperir gan y cloc cyfeirio i'r TXPLL yn effeithio'n uniongyrchol ar ansawdd data allbwn cyfresol y SerDes. Bydd yr amrywiadau jitter a chyfnod sy'n bresennol ar y cloc cyfeirio y mae'r TXPLL yn ei dderbyn hefyd yn ymddangos ar y ffrwd ddata cyfresol cyflym y mae'n ei chynhyrchu. Mae'r data canlynol yn cynrychioli cynnwys jitter y data cyfresol cyflym o'r SerDes gan ddefnyddio'r gwahanol gynlluniau cloc cyfeirio. Mae'r data isod yn dangos ansawdd ffrwd ddata PRBS7 3.125 Gbps a drosglwyddir gyda'r atebion cloc cyfeirio a drafodwyd.

FFIGUR 15: Data Jitter, LVDS i LVDS25_ODT, Rhyngwyneb Uniongyrchol (Ffigur Gosod 2).
Mesuriadau Jitter

FFIGUR 16: Diagram Llygad, LVDS i LVDS25_ODT, Rhyngwyneb Uniongyrchol (Ffigur Gosod 2).
Mesuriadau Jitter

FFIGUR 17: Jitter Data, LVDS to LVDS25 200Ω External Termination (Setup Figure 4).
Mesuriadau Jitter

FFIGUR 18: Eye Diagram, LVDS to LVDS25 200Ω External Termination (Setup Figure 4).
Mesuriadau Jitter

FFIGUR 19: Data Jitter, LVPECL i LVDS25_ODT (Ffigur Gosod 9).
Mesuriadau Jitter

FFIGUR 20: Diagram Llygad, LVPECL i LVDS25_ODT (Ffigur Gosod 9).
Mesuriadau Jitter

Mae'r tablau canlynol yn cyflwyno'r astudiaeth a wnaed gan dîm nodweddu Microsemi, gan gymharu jitter trosglwyddo SerDes â gwahanol fathau o RefClk.

TABL 7: JITTER DATA, RTG4 SERDES OUTPUT AT 3.125 GBPS FOR ALL REFCLK STANDARDS.

Rhif Dyfais Temp. Cyftage Cyflwr Paramedr LVDS 2.5V LVCMOS 2.5V LVCMOS 3.3V SSTL 1.8V SSTL 2.5V HSTL 1.8V
902 125°C Minnau. Total Jitter (mUI) 318 309 306 481 371 445
Jitter Penderfynol (mUI) 257 266 265 438 328 403
25°C Teip. Total Jitter (mUI) 343 289 287 355 406 358
Jitter Penderfynol (mUI) 291 246 247 315 366 318
–55 ° C. Max. Total Jitter (mUI) 257 263 273 340 458 316
Jitter Penderfynol (mUI) 221 222 232 304 414 275
905 125°C Minnau. Total Jitter (mUI) 309 304 301 429 362 453
Jitter Penderfynol (mUI) 250 263 259 386 317 409
25°C Teip. Total Jitter (mUI) 325 287 286 371 458 364
Jitter Penderfynol (mUI) 275 251 246 334 422 326
–55 ° C. Max. Total Jitter (mUI) 336 265 277 307 423 320
Jitter Penderfynol (mUI) 297 226 237 270 381 278
911 125°C Minnau. Total Jitter (mUI) 350 320 294 402 435 435
Jitter Penderfynol (mUI) 286 276 250 357 391 390
25°C Teip. Total Jitter (mUI) 332 303 301 427 451 333
Jitter Penderfynol (mUI) 273 257 253 384 407 291
–55 ° C. Max. Total Jitter (mUI) 320 277 264 312 385 331
Jitter Penderfynol (mUI) 278 239 223 271 342 293

TABL 8: JITTER DATA, RTG4 SERDES OUTPUT AT 2.5 GBPS FOR ALL REFCLK STANDARDS.

Rhif Dyfais Temp. Cyftage Cyflwr Paramedr LVDS 2.5V LVCMOS 2.5V LVCMOS 3.3V SSTL 1.8V SSTL 2.5V HSTL 1.8V
902 125°C Minnau. Total Jitter (mUI) 202 164 168 188 188 224
Jitter Penderfynol (mUI) 164 135 129 157 159 216
25°C Teip. Total Jitter (mUI) 200 143 146 181 214 241
Jitter Penderfynol (mUI) 170 117 120 151 185 213
–55 ° C. Max. Total Jitter (mUI) 169 161 148 186 186 231
Jitter Penderfynol (mUI) 136 135 122 159 159 168
905 125°C Minnau. Total Jitter (mUI) 174 165 167 187 194 217
Jitter Penderfynol (mUI) 146 131 136 153 166 190
25°C Teip. Total Jitter (mUI) 189 144 147 173 190 242
Jitter Penderfynol (mUI) 163 118 118 147 161 196
–55 ° C. Max. Total Jitter (mUI) 157 152 146 190 187 229
Jitter Penderfynol (mUI) 130 127 120 161 158 156
911 125°C Minnau. Total Jitter (mUI) 193 185 184 200 223 252
Jitter Penderfynol (mUI) 166 151 147 169 177 190
25°C Teip. Total Jitter (mUI) 182 163 175 197 196 215
Jitter Penderfynol (mUI) 151 131 143 164 163 159
–55 ° C. Max. Total Jitter (mUI) 159 145 150 208 199 182
Jitter Penderfynol (mUI) 134 119 118 166 169 155

TABL 9: JITTER DATA, RTG4 SERDES OUTPUT AT 1.25 GBPS FOR ALL REFCLK STANDARDS.

Rhif Dyfais Temp. Cyftage Cyflwr Paramedr LVDS 2.5V LVCMOS 2.5V LVCMOS 3.3V SSTL 1.8V SSTL 2.5V HSTL 1.8V
902 125°C Minnau. Total Jitter (mUI) 92 106 99 134 95 114
Jitter Penderfynol (mUI) 73 85 80 114 66 91
25°C Teip. Total Jitter (mUI) 100 99 99 88 99 108
Jitter Penderfynol (mUI) 16 77 76 68 76 79
–55 ° C. Max. Total Jitter (mUI) 97 93 94 114 91 106
Jitter Penderfynol (mUI) 78 73 72 90 65 84
905 125°C Minnau. Total Jitter (mUI) 100 100 106 97 122 130
Jitter Penderfynol (mUI) 76 74 87 69 90 101
25°C Teip. Total Jitter (mUI) 90 97 104 103 103 99
Jitter Penderfynol (mUI) 66 70 83 79 80 77
–55 ° C. Max. Total Jitter (mUI) 98 87 91 115 98 100
Jitter Penderfynol (mUI) 79 67 70 93 71 74
911 125°C Minnau. Total Jitter (mUI) 82 108 117 137 730 155
Jitter Penderfynol (mUI) 65 79 97 105 101 107
25°C Teip. Total Jitter (mUI) 115 115 776 108 110 146
Jitter Penderfynol (mUI) 90 83 85 72 82 116
–55 ° C. Max. Total Jitter (mUI) 99 96 104 111 117 91
Jitter Penderfynol (mUI) 75 78 81 78 90 62

Offer Caledwedd a Meddalwedd a Ddefnyddiwyd

The RTG4 Development Kit was used for testing the reference clocks and for waveform measurements. The RTG4 Development Kits on-board REFCLK CCLD-033-50-125.000 oscillator was disabled, isolated, and replaced with the Vectron clock driver LVPECL or LVDS along with the interface circuit for each testing of the clock types. Also, in-house test fixtures were developed for the specific tests of LVDS with a 200Ω load.

Defnyddiwyd Meddalwedd Microchip Libero SoC V11.9 i raglennu'r Pecynnau Datblygu RTG4, llwytho dyluniadau prosiect a gosod y math derbynnydd Mewnbwn SerDes REFCLK i'w brofi gyda'r cloc cyfatebol. Defnyddiwyd GUI Demo EPCS Microchip i wirio ansawdd y signal trwy brofi'r ddolen ddata ddi-wall rhwng trosglwyddydd RTG4 a derbynnydd y bloc SerDes, a hefyd i wirio'r cysylltiadau cylched cloc yn y bwrdd datblygu RTG4.

Keysight ADS 2017 was used to generate circuit diagrams and for simulations when needed; IBIS models used in the simulations were Microsemi RTG4 REFCLK Receiver rt4g_msio.ibs, Michel Semiconductor ibisTop_100el16 in sc07p07el0160a, Aero flex/Chobham ut54lvds031lvucc.ibs, and Fairchild ACT3301 cgs3311m 3_3V.ibs.

CYFEIRNODAU, CYSYLLTIEDIG WEBSAFLEOEDD, A THAFLENNAU DATA

MICROCHIP INFORMATION

Nodau masnach

Mae'r enw a'r logo “Microchip”, y logo “M”, ac enwau, logos a brandiau eraill yn nodau masnach cofrestredig ac anghofrestredig Microchip Technology Incorporated neu ei gysylltiadau a / neu is-gwmnïau yn yr Unol Daleithiau a / neu wledydd eraill (“Microchip Nodau masnach”). Mae gwybodaeth am Nodau Masnach Microsglodion ar gael yn https://www.microchip.com/en-us/about/legalinformation/microchiptrademarks.

ISBN: 979-8-3371-1916-8

Hysbysiad Cyfreithiol

Dim ond gyda chynhyrchion Microsglodyn y gellir defnyddio'r cyhoeddiad hwn a'r wybodaeth sydd ynddo, gan gynnwys dylunio, profi ac integreiddio cynhyrchion Microsglodyn gyda'ch cais. Mae defnyddio'r wybodaeth hon mewn unrhyw ffordd arall yn torri'r telerau hyn. Dim ond er hwylustod i chi y darperir gwybodaeth am gymwysiadau dyfeisiau a gall diweddariadau gael eu disodli. Eich cyfrifoldeb chi yw sicrhau bod eich cais yn cwrdd â'ch manylebau. Cysylltwch â'ch swyddfa gwerthu Microsglodion leol am gymorth ychwanegol neu, gofynnwch am gymorth ychwanegol yn www.microchip.com/en-us/support/design-help/client-support-services.

DARPERIR Y WYBODAETH HON GAN MICROCHIP “FEL Y MAE”. NID YW MICROCHIP YN GWNEUD UNRHYW SYLWADAU NA GWARANTAU O UNRHYW FATH P'un ai'n MYNEGI NEU WEDI'I GYMHWYSO, YN YSGRIFENEDIG NEU AR LAFAR, STATUDOL NEU FEL ARALL, YN YMWNEUD Â'R WYBODAETH SY'N CYNNWYS OND NID YN GYFYNGEDIG I UNRHYW WARANTIAETHAU GOBLYGEDIG O ANFOESOLDEB A CHYFEIRIANNAU RHYFEDD. PWRPAS, NEU WARANTAU SY'N BERTHNASOL I GYFLWR, ANSAWDD, NEU BERFFORMIAD.

NI FYDD MICROCHIP YN ATEBOL AM UNRHYW GOLLED ANUNIONGYRCHOL, ARBENNIG, OEDIOL NEU GANLYNIADOL, DIFROD, COST, NEU DREUL O UNRHYW FATH BETH OEDD YN BERTHNASOL I'R WYBODAETH NEU EI DEFNYDD, FODD WEDI ACHOSI, WEDI MAI WEDI EI ACHOSI. POSIBL NEU MAE Y DIFRODAU YN RHAGWELADWY. I'R MAINT LLAWN A GANIATEIR GAN Y GYFRAITH, NI FYDD CYFANSWM ATEBOLRWYDD MICROCHIP AR HOLL HAWLIADAU MEWN UNRHYW FFORDD SY'N GYSYLLTIEDIG Â'R WYBODAETH NEU EI DEFNYDDIO YN FWY NA SWM Y FFÏOEDD, OS OES RHAI, CHI WEDI TALU'N UNIONGYRCHOL I MICROCHIP AM Y WYBODAETH.

Mae defnyddio dyfeisiau Microsglodyn mewn cymwysiadau cynnal bywyd a/neu ddiogelwch yn gyfan gwbl ar risg y prynwr, ac mae'r prynwr yn cytuno i amddiffyn, indemnio a dal Microsglodyn diniwed rhag unrhyw a phob iawndal, hawliad, siwtiau, neu dreuliau sy'n deillio o ddefnydd o'r fath. Ni chaiff unrhyw drwyddedau eu cyfleu, yn ymhlyg neu fel arall, o dan unrhyw hawliau eiddo deallusol Microsglodyn oni nodir yn wahanol.

Nodwedd Diogelu Cod Dyfeisiau Microsglodyn

Sylwch ar y manylion canlynol am y nodwedd amddiffyn cod ar gynhyrchion Microsglodyn:

  • Mae cynhyrchion microsglodyn yn bodloni'r manylebau sydd wedi'u cynnwys yn eu Taflen Ddata Microsglodion benodol.
  • Mae microsglodyn yn credu bod ei deulu o gynhyrchion yn ddiogel pan gaiff ei ddefnyddio yn y modd a fwriadwyd, o fewn manylebau gweithredu, ac o dan amodau arferol.
  • Mae microsglodyn yn gwerthfawrogi ac yn amddiffyn ei hawliau eiddo deallusol yn ymosodol. Mae ymdrechion i dorri nodweddion diogelu cod cynnyrch Microsglodyn wedi'i wahardd yn llym a gallai dorri Deddf Hawlfraint y Mileniwm Digidol.
  • Ni all Microsglodyn nac unrhyw wneuthurwr lled-ddargludyddion arall warantu diogelwch ei god.
    Code protection does not mean that we are guaranteeing the product is “unbreakable”. Code protection is constantly evolving. Microchip is committed to continuously improving the code protection features of our products.

© 2019-2025 Microchip Technology Inc. a'i is-gwmnïau

Logo

Dogfennau / Adnoddau

MICROCHLIP RTG4 Goddefgarwch Ymbelydredd Cenhedlaeth 4 [pdfLlawlyfr Cyfarwyddiadau
RTG4, RTG4 Goddefgar i Ymbelydredd Cenhedlaeth 4, RTG4, Goddefgar i Ymbelydredd Cenhedlaeth 4, Goddefgar i Ymbelydredd Cenhedlaeth 4, Cenhedlaeth 4

Cyfeiriadau

Gadael sylw

Ni fydd eich cyfeiriad e-bost yn cael ei gyhoeddi. Mae meysydd gofynnol wedi'u marcio *